Calculating the effect of employee stock options on diluted EPS

Warrick van Zyl Enrico Uliana

warrick.vanzyl@uwa.edu.au

Diluted Earnings per Share

Calculating DEPS

Question?

What is the best method to use for calculating DEPS when the firm has outstanding ESOs?

Who cares?

Pervasive use of EPS/DEPS/PE Ratio

- Only accounting metric quoted by AFR and Google Finance
- Analysts forecast DEPS (Marquardt and Wiedman 2005)

Current IAS 33 requirement

Treasury stock method

$$D = n_o - \frac{n_o X}{P}$$

Treasury stock method

by rearranging

$$D = \frac{n_o}{P} \left(P - X \right)$$

Prior literature

Core, Guay & Kothari (2002)

 $D = \frac{n_o F}{P}$

Prior literature

- Landsman, Peasnell, Pope & Yeh (2006)
 - within the Ohlson (1995) framework ESOs should be treated as a liability carried at fair value

This research

- Again use Ohlson (1995) framework
 adapted for ESOs by Hess &
 - Lüders(2001)

Alternative method for DEPS

Derive the following formula

$$\frac{\Delta S_t}{n_s} = \frac{x_t - d_t - \Delta O_t}{n_s}$$

Compared to

- Core et al.
 - value of firm is simple linear function of earnings
 - Does not resolve differences between cash- & equity-settled options
- Landsman et al.
 - ESOs represent a liability
 - similar treatment at a DEPS level

Three methods

	Earnings adjustment	Treasury stock	Treasury option
Adjusts	Earnings	No. of	No. of
		shares	shares
Based on	Changes in	Intrinsic	Fair value
	fair value	value	
Future	No	Adjust for	No
services	adjustment	unamortise	adjustment
		d expense	

Applying the three methods

Simple example

No. of shareholders10Cash asset100Return on cash deposit10%

Example 3: over 2 periods

Interest received Income from services IFRS 2 expense Net income 10,00 11,21 2,08 1,91 (1,74) (1,74) 10,35 11,38

Y2

Y1

Example 3: over 2 periods

DEPS		
Earnings adjustment method	1,00	1,10
Treasury stock method	1,02	1,10
Treasury option method	1,00	1,10
Share price	11,00	12,10
Option value	1,91	2,10

Example 4: uncertainty

	Y1	Y2(1)	Y2(2)	E(Y2)
Interest received	10,00	(18,79)	41,21	11,21
Income from services IFRS 2 expense	2,08 (1,74)	1,91 (1,74)	1,91 (1,74)	1,91 (1,74)
Net income	10,35	(18,62)	41,38	11,38

Example 4: uncertainty

EPS	Y1	Y2(1)	Y2(2)	E(Y2)
EAM	0,964	(1,444)	3,636	1,096
TSM	1,017	(1,862)	3,893	1,016
ТОМ	0,997	(1,862)	3,893	1,016
Share price	10,96	9,52	14,60	12,06
Δ	0,964	(1,444)	3,636	1,096

Which is the best method?

- earnings adjustment method
 - best captures change in wealth
- treasury option method
 - best indicator of future earnings
- treasury stock method
 - least useful of three

Practical consequences

Test EAM using 5 ASX companies:

- o CSL
- Afterpay
- o Reece
- o Xero
- o carsales.com

For the last 5 years

Practical consequences

Estimate the EAM adjustment by:

CB - OB - OGRT + OEXR + OFOR

EAM results

Firm	Year	EAM / π	EAM vs DEPS
CSL	2018	2.09%	1.76%
Afterpay	2017 – 2021	259 - 2,627%	294 - 2,502%
Reece	2021, 2020	1.13%, 0.01%	0.66%, 0.01(h)
Xero	2017 – 2021	1.20 - 1,408%	1.75 – 1,628%
carsales	2017 – 2021	0.68 - 2.79%	0.8(h) - 2.59%

EAM results

Conclusions from test sample

- IAS 33 significantly understates the dilution
- Can have very large EAM adjustments
 - Significant DEPS volatility
 - If P:E ratio large
- EAM DEPS can be higher than basic EPS

Implications for standard setting

- Align cash- and equity-settled ESOs
- TOM would be a simple change
- Not necessary to adjust exercise price
- Need to clarify the distinction between debt and equity

Calculating the effect of employee stock options on diluted EPS

Warrick van Zyl

warrick.vanzyl@uwa.edu.au