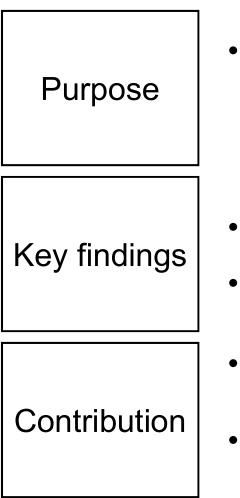
IASB and JIAR Research Forum 28th October 2019


Real Effects of Intangibles Capitalization —Empirical Evidence from Voluntary IFRS Adoption in Japan—

Yoshiaki Amano

Graduate School of Economics

Kyoto University

Summary

- To examine changes in firms' behaviors after IFRS adoption in Japan expanding the scope for intangibles capitalization
- More intangibles \rightarrow IFRS adoption
- IFRS adoption \rightarrow More intangibles
- <u>Academic</u>: providing empirical evidence related to past analytical works
- <u>Practical</u>: suggesting that intangibles accounting affects real decision-making

• Theory and hypotheses

- Research design
- Results

• Conclusion

Should intangibles be capitalized?

How should a firm measure and disclose its intangible assets?

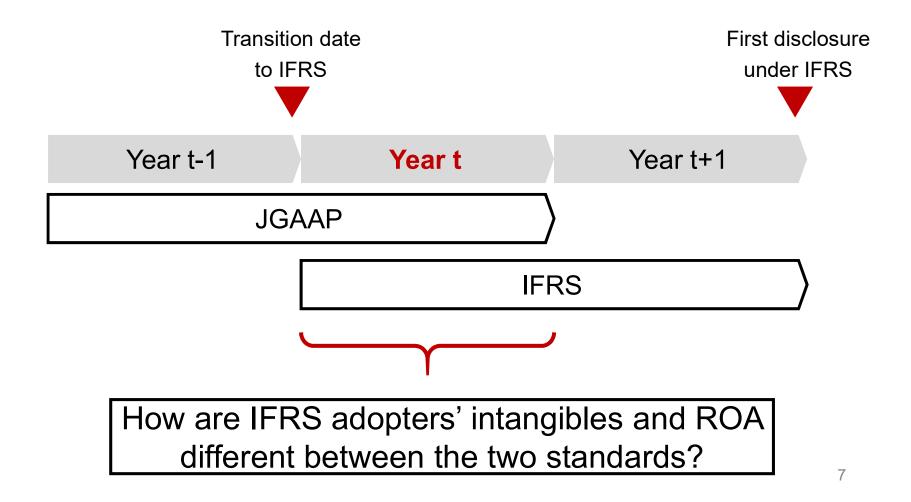
	Capitalization		Historical cost approach
•	Traditional financial statements have become less relevant	•	Intangibles being recorded on B/S is problematic
•	Without capitalization of intangible investments, B/S are undervalued	•	Investors can evaluate firms based on the information in P/L

- Intangibles capitalization increases the usefulness of financial statements
- Disclosure of intangible investments should be left to private incentives

Real effects of intangibles capitalization

- How intangibles are measured and reported can significantly affect firms' real decisions
- 1. <u>More intangibles \rightarrow Capitalization</u>
 - When the relative weight of intangibles is sufficiently large, intangibles capitalization is more preferable than expensing (Kanodia et al., 2004)

2. <u>Capitalization \rightarrow More intangibles</u>


 Investment level under expensing is lower than that under capitalization (Lu and Sivaramakrishnan, 2017) IFRS vs Japanese GAAP

• IFRS and JGAAP have several differences in terms of intangibles accounting

	IFRS	JGAAP
Goodwill	 No regular amortization 	 Regularly amortized within 20 years
R&D	 Development cost is partially capitalized 	 R&D expenditure is fully expensed

How do those differences impact the amount of intangibles of IFRS adopters? Preliminary analysis (1/2)

 Comparing intangibles and ROA under JGAAP and IFRS in the year of transition (year t)

Preliminary analysis (2/2)

• Firms with larger intangibles benefit more from and thus have greater incentives for IFRS adoption

Sample	Ν	JGAAP (1)	IFRS (2)	Difference (2) – (1)
All	40	0.109	0.120	0.010
Large IA	20	0.203	0.218	0.016
Small IA	20	0.016	0.021	0.005

Panel A: IA (Intangible assets deflated by total assets)

Panel B: ROA (net profit deflated by beginning-year total assets)

Sample	Ν	JGAAP (1)	IFRS (2)	Difference (2) – (1)
All	40	0.052	0.084	0.033
Large IA	20	0.061	0.101	0.040
Small IA	20	0.042	0.068	0.025

Hypotheses

• <u>More intangibles</u> → IFRS adoption

H1: The more intangibles a firm has, the more likely it is to adopt IFRS.

• IFRS adoption → More intangibles

H2: Once a firm decides to adopt IFRS, it further increases its intangible investment.

Index

Theory and hypotheses

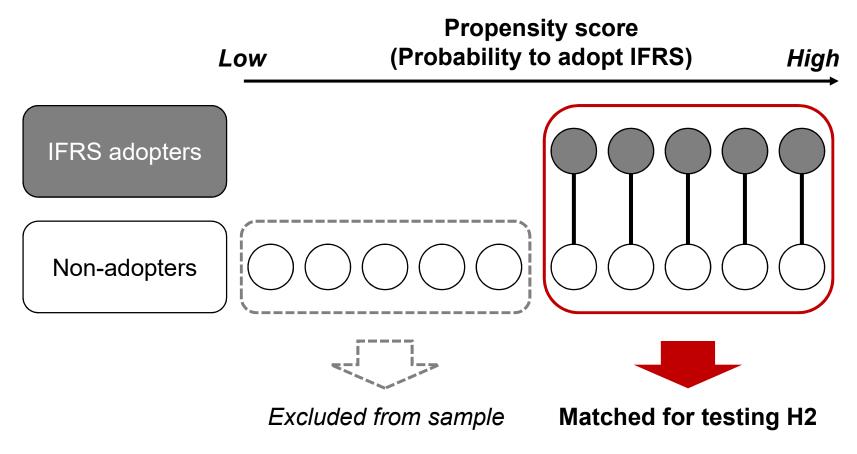
Research design

• Results

• Conclusion

Logit model for IFRS adoption

H1: More intangibles \rightarrow IFRS adoption


 To test H1, this study builds a logit model to predict the likelihood of IFRS adoption

 $ADOPTION_{i,t} = Logit(\beta_0 + \beta_1 IA_{i,t-5} + \beta_2 RD_{i,t-5} + Controls)$

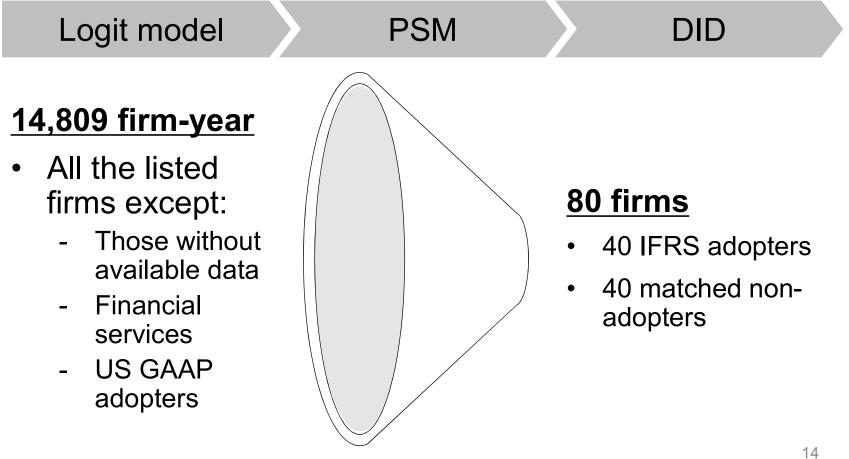
- ADOPTION = A dummy variable which takes a value of 1 for IFRS adopters, and 0 otherwise
- *IA* = Intangible assets/Total assets
- *RD* = R&D expenses/Sales

Propensity score matching (PSM)

• To eliminate self-selection bias, IFRS adopters are matched with non-adopters based on propensity score

Difference in difference (DID)

H2: IFRS adoption \rightarrow More intangibles


 Intangibles are compared between pairs of IFRS adopters and non-adopters before and after adoption

$$IA = \beta_0 + \beta_1 POST + \beta_2 ADOPTION + \beta_3 (POST * ADOPTION) + Controls$$

- *IA* = Intangible assets/Total assets
- *POST* = A dummy variable that is equal to 1 after IFRS adoption, and 0 otherwise
- ADOPTION = A dummy variable which takes a value of 1 for IFRS adopters, and 0 otherwise
- *POST* * *ADOPTION* = Interaction term

Sample

• 14,809 firm-year samples for the logit model and 80 matched firms for DID are collected

Index

Theory and hypotheses

Research design

• Results

• Conclusion

Logit model for IFRS adoption

H1: More intangibles \rightarrow IFRS adoption

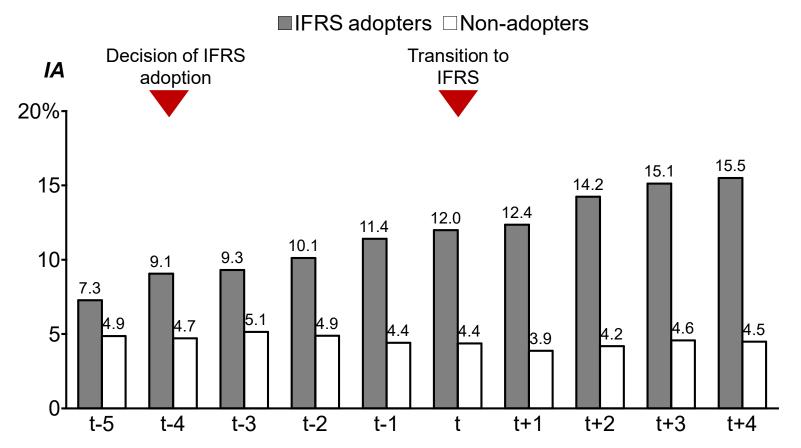
 Intangibles and R&D expenses are significantly correlated to the likelihood of IFRS adoption

IA	6.858*** (2.175)
RD	0.315** (0.128)
FS	2.162*** (0.631)
SIZE	0.964*** (0.254)
AGE	-0.501*** (0.114)
Intercept	-33.248*** (3.419)
Year FE	Yes
Industry FE	Yes
N	14,809
Nagelkerke R-square	0.405

Year-clustered standard errors are in parenthesis

***, **, and *, indicate statistical significance at the 1%, 5%, and 10% levels, respectively

Propensity score matching (PSM)


 Matched pairs are well balanced and appropriate for DID comparisons

	Adopters	Non-Adopters	Difference	P-value
IA	0.073	0.049	0.024	0.332
RD	0.190	0.040	0.151	0.276
FS	0.352	0.405	-0.052	0.433
SIZE	12.735	12.978	-0.242	0.490
AGE	3.804	3.988	-0.183	0.184
PS	0.148	0.125	0.022	0.632
Ν	40	40	-	-

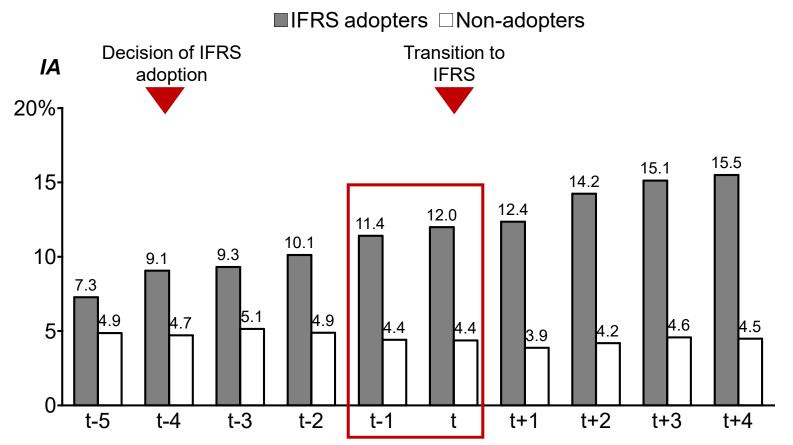
Changes in intangible assets

H2: IFRS adoption \rightarrow More intangibles

 IFRS adopters increase intangibles compared with matched non-adopters

This table presents mean value of *IA* (intangible assets deflated by total assets) for the sample of 40 matched pairs of IFRS adopters and non-adopters.

The numbers for IFRS adopters are those of JGAAP until year t-1 while IFRS after t


Changes in intangible assets

- 1. One-time accounting effect
 - A portion of the past investments expensed under JGAAP are capitalized ex post facto in year *t*, which increases *IA* as a one-time effect
- 2. Continuous accounting effect
 - IA should increase faster than in the pre-adoption period even if firms continue their operations in exactly the same manner
- 3. Continuous real effect
 - The remainder of the change can be attributed to a real effect, which is as assumed in H2

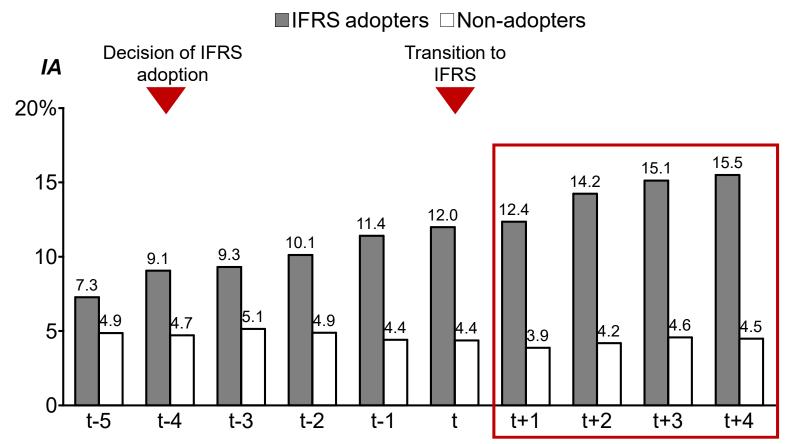
1. One-time accounting effect

H2: IFRS adoption \rightarrow More intangibles

 IFRS adopters increase intangibles compared with matched non-adopters

This table presents mean value of *IA* (intangible assets deflated by total assets) for the sample of 40 matched pairs of IFRS adopters and non-adopters.

The numbers for IFRS adopters are those of JGAAP until year t-1 while IFRS after t


Changes in intangible assets

- 1. One-time accounting effect
 - A portion of the past investments expensed under JGAAP are capitalized ex post facto in year *t*, which increases *IA* as a one-time effect
- 2. Continuous accounting effect
 - IA should increase faster than in the pre-adoption period even if firms continue their operations in exactly the same manner
- 3. Continuous real effect
 - The remainder of the change can be attributed to a real effect, which is as assumed in H2

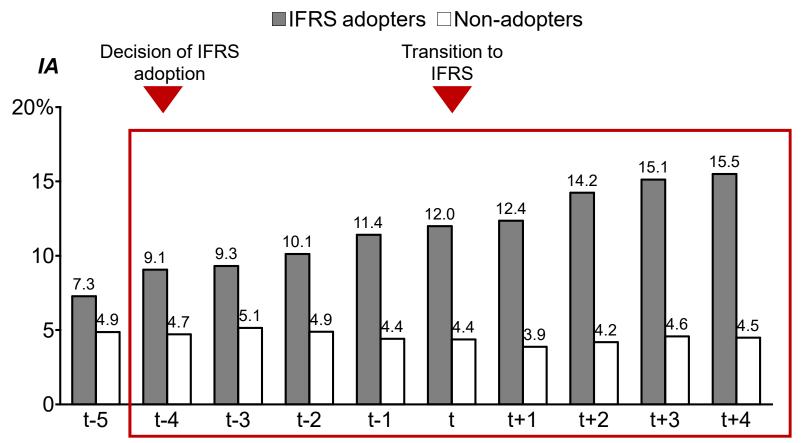
2. Continuous accounting effect

H2: IFRS adoption \rightarrow More intangibles

 IFRS adopters increase intangibles compared with matched non-adopters

This table presents mean value of *IA* (intangible assets deflated by total assets) for the sample of 40 matched pairs of IFRS adopters and non-adopters.

The numbers for IFRS adopters are those of JGAAP until year t-1 while IFRS after t


Changes in intangible assets

- 1. One-time accounting effect
 - A portion of the past investments expensed under JGAAP are capitalized ex post facto in year *t*, which increases *IA* as a one-time effect
- 2. Continuous accounting effect
 - IA should increase faster than in the pre-adoption period even if firms continue their operations in exactly the same manner
- 3. Continuous real effect
 - The remainder of the change can be attributed to a real effect, which is as assumed in H2

3. Continuous real effect

H2: IFRS adoption \rightarrow More intangibles

 IFRS adopters increase intangibles compared with matched non-adopters

This table presents mean value of *IA* (intangible assets deflated by total assets) for the sample of 40 matched pairs of IFRS adopters and non-adopters.

The numbers for IFRS adopters are those of JGAAP until year t-1 while IFRS after t

Difference in difference (DID)

H2: IFRS adoption \rightarrow More intangibles

• The result holds when using multivariate DID model

(POST*ADOPTION)	0.062** (0.020)
POST	0.007 (0.021)
ADOPTION	-0.003 (0.012)
BTM	-0.010 (0.007)
LEV	0.146*** (0.035)
SIZE	-0.010 (0.008)
Intercept	0.082 (0.047)
Year FE	Yes
Industry FE	Yes
Ν	160
Adjusted R-square	0.270

Year-clustered standard errors are in parenthesis

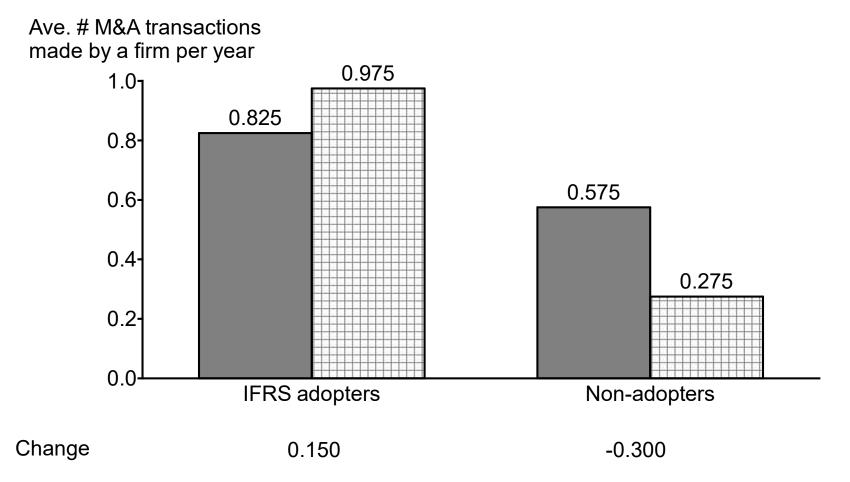
***, **, and *, indicate statistical significance at the 1%, 5%, and 10% levels, respectively

Robustness test

1. Changes in real actions following adoption

2. More recent sample

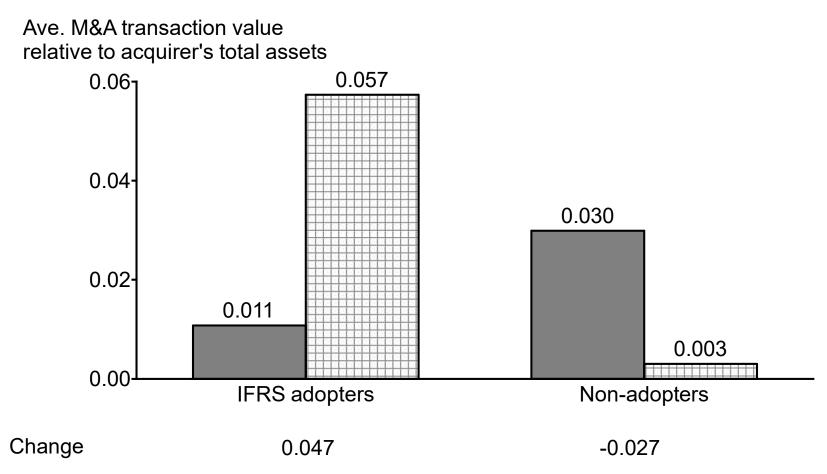
3. Observation period relative to adoption


4. One-to-many matching

Changes in real actions following adoption (1/2)

M&A transaction volume increased after adoption

■Pre-adoption


□Post-adoption

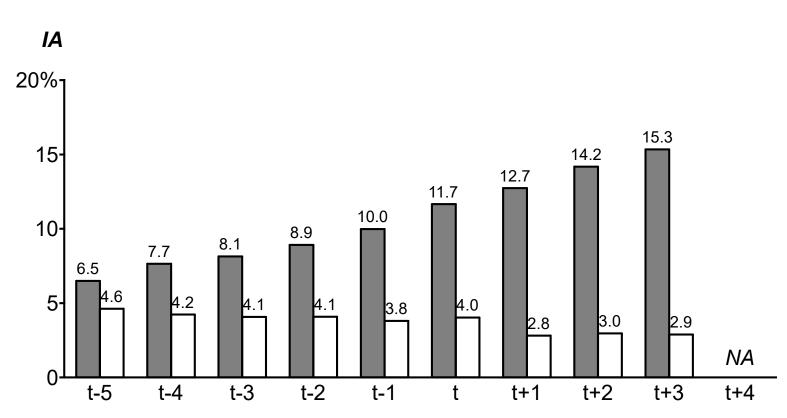
Changes in real actions following adoption (2/2)

• Furthermore, transaction value increased significantly

■Pre-adoption □Post-adoption

Robustness test

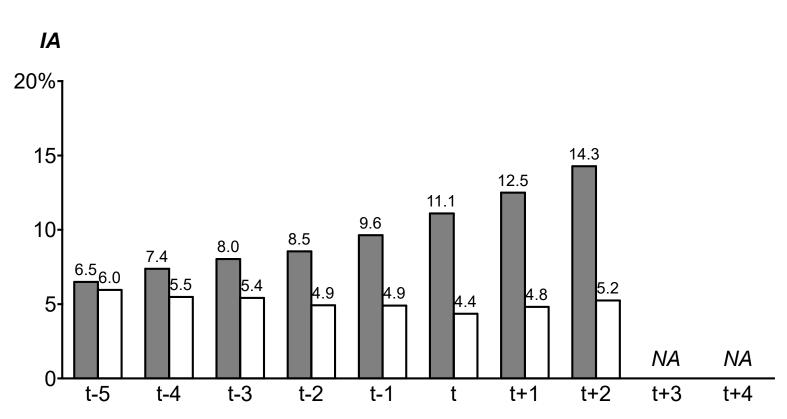
1. Changes in real actions following adoption


2. More recent sample

3. Observation period relative to adoption

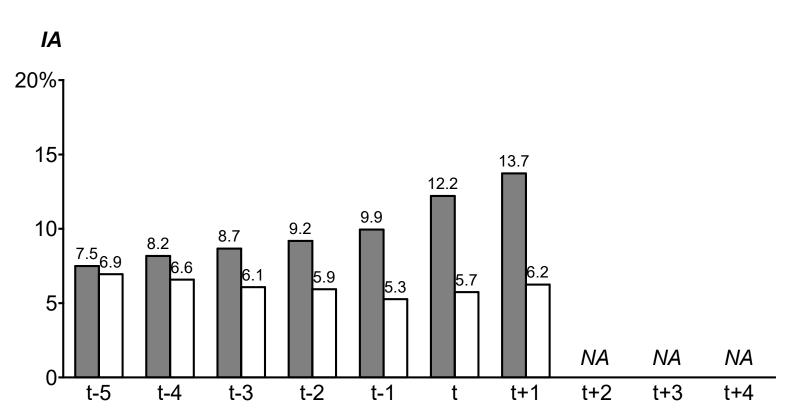
4. One-to-many matching

More recent sample (54 matched pairs)


• The result holds when using more recent sample

■IFRS adopters □Non-adopters

This table presents mean value of *IA* (intangible assets deflated by total assets) for the sample of 54 matched pairs of IFRS adopters and non-adopters including data until 2016. The numbers for IFRS adopters are those of JGAAP until year t-1 while IFRS after t More recent sample (80 matched pairs)


• The result holds when using more recent sample

■IFRS adopters □Non-adopters

This table presents mean value of *IA* (intangible assets deflated by total assets) for the sample of 80 matched pairs of IFRS adopters and non-adopters including data until 2017. The numbers for IFRS adopters are those of JGAAP until year t-1 while IFRS after t More recent sample (105 matched pairs)

• The result holds when using more recent sample

■IFRS adopters □Non-adopters

This table presents mean value of *IA* (intangible assets deflated by total assets) for the sample of 105 matched pairs of IFRS adopters and non-adopters including data until 2018. The numbers for IFRS adopters are those of JGAAP until year t-1 while IFRS after t

More recent sample

• The result holds when using more recent sample

	54 pairs	80 pairs	105 pairs
(POST*ADOPTION)	0.074***	0.072***	0.066***
	(0.018)	(0.022)	(0.017)
POST	-0.095***	-0.075*	-0.025
	(0.017)	(0.042)	(0.019)
ADOPTION	0.017	0.000	0.015
	(0.011)	(0.018)	(0.013)
BTM	-0.005	-0.010	-0.028***
	(0.009)	(0.006)	(0.005)
LEV	0.071*	0.108***	0.064*
	(0.033)	(0.022)	(0.034)
SIZE	-0.002	-0.003	0.000
	(0.004)	(0.004)	(0.007)
Ν	216	320	420
Adjusted R-square	0.321	0.256	0.239

Year-clustered standard errors are in parenthesis

***, **, and *, indicate statistical significance at the 1%, 5%, and 10% levels, respectively Intercept and coefficients of year / industry dummy are not shown in the table

Robustness test

1. Changes in real actions following adoption

2. More recent sample

3. Observation period relative to adoption

4. One-to-many matching

Observation period relative to adoption

• The result of the logit model holds when changing observation period

-	Period of independent variables		
	t-6	t-7	
IA	7.051*** (2.160)	5.284*** (1.934)	
RD	0.394** (0.181)	0.327** (0.159)	
FS	2.131*** (0.555)	2.096*** (0.532)	
SIZE	0.954*** (0.258)	0.935*** (0.276)	
AGE	-0.451*** (0.105)	-0.555*** (0.154)	
N	14,378	13,836	
Nagelkerke R-square	0.397	0.383	

Year-clustered standard errors are in parenthesis

***, **, and *, indicate statistical significance at the 1%, 5%, and 10% levels, respectively Intercept and coefficients of year / industry dummy are not shown in the table

Observation period relative to adoption

 The result of the DID model holds when changing observation period

Pre-adoption	t-6	t-7	t-5	t-5
Post-adoption	t+1	t+1	t+2	t+3
(POST*ADOPTION)	0.062**	0.067***	0.072***	0.078***
	(0.022)	(0.020)	(0.021)	(0.018)
POST	-0.044	0.027	0.022	0.029
	(0.030)	(0.016)	(0.026)	(0.027)
ADOPTION	0.000	-0.003	-0.002	-0.004
	(0.010)	(0.008)	(0.013)	(0.011)
BTM	-0.034**	-0.045***	-0.013	-0.012
	(0.014)	(0.013)	(0.007)	(0.008)
LEV	0.132***	0.097**	0.205**	0.197***
	(0.023)	(0.040)	(0.083)	(0.063)
SIZE	-0.012*	-0.010**	-0.015	-0.015
	(0.005)	(0.005)	(0.011)	(0.011)
Ν	160	160	160	160
Adjusted R-square	0.241	0.218	0.324	0.317

Year-clustered standard errors are in parenthesis

***, **, and *, indicate statistical significance at the 1%, 5%, and 10% levels, respectively

Intercept and coefficients of year / industry dummy are not shown in the table

Robustness test

1. Changes in real actions following adoption

2. More recent sample

3. Observation period relative to adoption

4. One-to-many matching

One-to-many matching

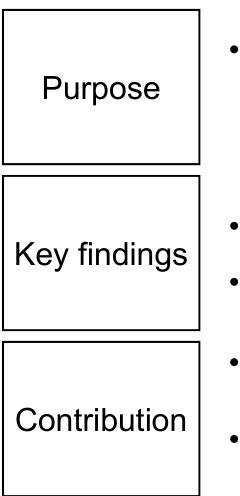
 The result of the DID model holds when using one-tomany matching

Matching	1 to 2	1 to 3
(POST*ADOPTION)	0.060* (0.031)	0.054* (0.030)
POST	0.006 (0.024)	0.010 (0.012)
ADOPTION	0.018 (0.022)	0.025 (0.020)
BTM	-0.019** (0.008)	-0.016 ^{**} (0.006)
LEV	0.094*** (0.021)	0.082* ^{**} (0.017)
SIZE	-0.005 (0.004)	-0.002 (0.003)
N	240	320
Adjusted R-square	0.232	0.273

Year-clustered standard errors are in parenthesis

***, **, and *, indicate statistical significance at the 1%, 5%, and 10% levels, respectively Intercept and coefficients of year / industry dummy are not shown in the table

Index


Theory and hypotheses

Research design

• Results

Conclusion

Conclusion

- To examine changes in firms' behaviors after IFRS adoption in Japan expanding the scope for intangibles capitalization
- More intangibles \rightarrow IFRS adoption
- IFRS adoption \rightarrow More intangibles
- <u>Academic</u>: providing empirical evidence related to past analytical works
- <u>Practical</u>: suggesting that intangibles accounting affects real decision-making

Thank you for your kind attention