D0656D-2011

General principles on interest rate risk management for the banking book

AGENDA

interest rate risk management for the banking book

- Overview
- Models
- Internal hedging derivatives
- Key points
- Organisational & performance issues
 - Bank A
 - Bank B

IRR for the banking book: regulatory framework

- As pointed out in Basel Committee July 2004 Chapter X, Principle 14:
 - All material interest rate risk associated with the banking book <u>must</u> be assessed. To do this, internal systems must accurately incorporate all of a bank's interest rate sensitive on- and off-balance sheet holdings;
 - internal systems must be capable of measuring risk using both an earnings and economic/sensitivity approach.
- In this respect, best practice should at least comprise:
 - **A.** A methodology to identify the different risk components, with particular focus on those affecting the IRR (slide 11)
 - B. A set of instruments to deal with the management of IRR:
 - 1. Standard measures for IRR sensitivity (PV01, bucketing, etc.) & limits. Slide 6-8
 - 2. Models for optionalities (prepayment option & sight depos) & for Equity. Slides 13 -21
 - 3. Standard measures for refixing and basis risk. Slide 12

trading vs banking book, objective of IRR management

- Trading book vs Banking book: as for the management of interest rate risk, the trading book exposure is usually treated separately from the one arising from the banking book.
- IRR management activity relates to the "pure" interest rate component of the larger Net Interest Margin (NIM), which includes both credit & liquidity spreads.
- The main objective of IRR management of a bank with an "originate and hold" business model is to reduce the volatility of the "pure" interest margin and to produce a stable stream of "pure" interest income.

IRR for the banking book: ALM's compromise

- ALM should strive for a compromise between the stream of future NIMs and current NIM: they are two sides of the very same coin. This is typically achieved via a framework of limits consistent with the size of the existing banking book.
- ALM adopts the trading and treasury tools to its own needs (PV01 ⁽¹⁾, bucket sensitivity, vega, stress scenario) to:
 - spot sources of IR risk;
 - assess the impact of interest changes on the current & future interest margin stream.

Future interest margins perspective economic value/sensitivity approach:
potential impact of interest rate changes
on the present value of all future cash
flows related to the existing banking
book → long-term effects of changes in
interest rates

Current interest margin perspective:

effects of IR changes on net interest income → near-term perspective, not providing indication of the impact of IR changes on the bank's overall position

Repricing risk

 Repricing risk (also known as refinancing risk) appears whenever the duration of assets differs from the duration of liabilities.
 If assets' duration > liabilities' duration:

- If Interest rate 1, the future liability would cost more.
- ➤ If interest rate ___, the future liability would cost less.

Repricing risk

• A better understanding of IRR exposure could be assessed by bucketing cash flows and theirs sensitivities. Let's assume the following banking book:

ASSETS	Notional	Maturity	Rate
Fixed rate mortgages	15 € /bn	20y amort.	4.00%

LIABILITIES	Notional	Maturity	Rate			
Fixed rate liabilities	15 € /bn	10y bullet	3.50%			
Interest rate swap	10 € /bn	10y bullet	Rec 3.50% Pay EUR1M			

Repricing risk: bucket sensitivity & limits

managing open portfolios

- As mentioned, the Banking Book is what is not managed in the Trading Book
- All single items belonging to a specific category (mortgages, bonds, sight depos, equity, etc.) flow undiscretionally into the banking book under management. With the exception of net equity, non-interest bearing items are excluded.
- The resulting portfolio is tautologically an open portfolio/a sum of open portfolios managed as a single unit by the Treasury/ALM via an open portfolio of hedging instruments

transfer pricing and internal deals

- Bank's treasury department gathers "pure" interest rate risk exposure stemming from the business units at the relevant benchmark rate (i.e. IRS or Euribor) via Transfer Price Process;
- The treasury manages its net risk position by dealing with:
 - the group's investment bank and/or
 - the internal trading desk and/or
 - market counterparties

Segregation of risk components

• Basic example of IRR components' segmentation

Refixing & basis risk

- Before the 2008 liquidity crisis, basis risk on the same currency was not an issue (i.e. Euribor 6m was quasi equivalent to Euribor 3m refinanced on forward rate for 3 months) and banks managed the refixing risk via OIS⁽²⁾: It was sufficient to wait for the fixing day and enter into an OIS to hedge this risk perfectly.
- As a consequence of the crisis, Euribor/Libor vs OIS rates started to diverge significantly

- Both repricing and basis mismatch requires now different hedging mechanics.
- The cost of the basis is also a component to be included in the "interest risk management" and transfer price process. See slide 11.

AGENDA

interest rate risk management for the banking book

- Overview
- Models
- Internal hedging derivatives
- Key points
- Organisational & performance issues
 - Bank A
 - Bank B

MODELS

- Any IRR measure is based on the various assets' and liabilities' cash flows.
- In some cases, these cash flows are not fully determined. In these cases, one has to use **expected cash flows**, i.e. a **model**.
- The three most important areas where this is true are loans with prepayment options, sight deposits, and non-financial assets and liabilities.

MODELSPrepayment Risk

- In many countries, debtors have a **contractual or legal right to prepay** all or a portion of their fixed-rate mortgage.
- If the prepaid loan has carried a relatively high interest rate, the bank incurs an **economic loss**. In many cases, the customer does not have to pay a **prepayment penalty** that (fully) compensates the bank for this loss.
- In risk management, this prepayment right is considered an **option**. It has to be taken into account as, **on average**, it will shorten the loans' cash flow profile and therefore, by implication, **change the bank's IRR**.
- Prepayment risk is necessarily modelled at an aggregate, i.e. portfolio, level.
 A "law of large numbers" effect usually reduces the uncertainty sorrounding
 the question, To what extent will any one customer actually exercise his
 option?

MODELS Prepayment Risk

- Banks use different models to capture prepayment risk. To illustrate, we present one popular approach, called a Constant Prepayment Rate (CPR) model.
- Depending on the assumed CPR, the cash flow profile changes significantly:

MODELS Prepayment Risk

One important input when calibrating such a CPR model are **historical data** of actual prepayment rates:

MODELS

Prepayment Risk

In practice, a pool of mortgages might be separated into different layers that represent different degrees of prepayment risk:

- The "core CPR" layer (dark grey area)
 reflects the portion of mortgages
 which are highly likely to be prepaid.
- The "max CPR" layer (light grey area)
 reflects the portion of mortgages
 which are assumed not to be prepaid.
- The "uncertain CPR" layer (red area)
 represents the portion of mortgages
 which might be prepaid and which
 could be hedged using options.

MODELSSight Deposits

- From a contractual view point, sight deposits have an overnight maturity.
- However, historical data show that, in aggregate, sight deposits are a relatively **stable source of funding**. Moreover, the **average customer rate** is rather **sticky**:

Sight Deposits

- Thus, under an IRR perspective, a material portion of sight deposits represents not overnight money but rather a sticky-rate long-term liability.
- The widely used "core volume models" aim to incorporate this insight into ALM's risk management by adjusting the relevant cash flow profile:

Cash flow profile and interest rate sensitivity of portfolio of modelled vs contractual sight deposits

MODELS

Non-Financial Assets and Liabilities

- The third area where modelling is used in IRR are non-financial assets and liabilities. They are often modelled as "net equity" (i.e. equity less assets such as property or equipment plus liabilities such as pension reserves).
- In a recent survey by PwC, 58% of the banks said they incorporated a target duration for their net equity/assets into the IRR management. The majority of them used a duration of between 1 and 5 years.
- Many banks use a so-called replication model for this purpose (i.e. they model a bottom layer of their equity as a number of staggered fixed-rate tranches which are rolled over at regular intervals).

AGENDA

interest rate risk management for the banking book

- Overview
- Models
- Internal hedging derivatives
- Key points
- Organisational & performance issues
 - Bank A
 - Bank B

INTERNAL HEDGING DERIVATIVES

AGENDA

interest rate risk management for the banking book

- Overview
- Models
- Internal hedging derivatives
- Key points
- Organisational & performance issues
 - Bank A
 - Bank B

KEY POINTS

IRR is managed

- as a whole: all interest risk profile collapse into a comprehensive measure, namely PV01 sensitivity
- via a framework of benchmark rates through which Business Units transfer the risk to the ALM
- via a framework of limits set at board level
- giving priority to the self-hedging capabilities existing within the banking book (i.e. hedging a fixed rate loan with a portion of modelled sight deposits)
- entering into Interest Rate products such as IR Swap, IR Swaption, Caps & Floors, OIS, Basis Swaps (internal deals or external ones).

KEY POINTS

AGENDA

interest rate risk management for the banking book

- Overview
- Models
- Internal hedging derivatives
- Key points
- Organisational & performance issues
 - Bank A
 - Bank B

Organisational Issues – Bank A

- A major UK based International Bank operates a centralised policy and control infrastructure for ALM and Risk
- This policy requires all structural interest rate risk to be passed to a dedicated unit within it's Global Investment Bank
- However this risk is managed at a local level within a dedicated Balance Sheet Management (BSM) unit which exists in each local entity
- As a result risk is managed within local limits not global limits

Organisational Issues – Bank A

- This 'subsidiarisation' approach for risk mirrors the approach for capital and reflects the entity legal structure
- The approach ensures that the risk management process uses local market instruments and reflects local market practices
- However it also ensures that models used and behavioural assumptions made are in line with group standards and requirements

Organisational Issues – Bank A

- Risk transfer of interest rate exposures to BSM are made at appropriate market rate for the currency and risk tenor
- BSM entities are targeted to optimise Net Interest Income (NII) over the short to medium term in line with plans agreed with central management
- In carrying out this strategy some fair value risk management tools will be used but these are not value or reward drivers
- P&L of BSM shown as NII and main risk disclosure is sensitivity of the projected NII to 25 bp interest rate shift (split by currency bloc)

AGENDA

interest rate risk management for the banking book

- Overview
- Models
- Internal hedging derivatives
- Key points
- Organisational & performance issues
 - Bank A
 - Bank B

Bank B - Structural Interest Rate Risk calls for 'closed world' and 'open world' risk metrics

Bank B-

FTP does *not* transfer structural risk

Bank B- The risk mitigation decision process is ALCOs-driven, and risk department-controlled

Bank B

ALM P&L is measured

Bank B ALCOs – Roll ups

➤ ALCOs are held at each node of the organization. Nodes are business lines-based and legal entities-based

> Executive Management at each level are involved at each node

Bank B

IR Gaps give a view on Risk...

> An IR Gap can typically be represented by the table below:

Avg Balance	1 y	2 y	Зу	4y	5 y	6y	7 y	8y	9у	10 y
Fixed Rate Assets	- 96	- 89	- 81	- 74	- 67	- 60	- 54	- 47	- 40	- 34
Fixed Rate Liabilities	90	81	73	65	59	53	48	43	39	35
Fixed Rate gap	- 6	- 8	- 9	- 9	- 8	- 7	- 6	- 4	- 2	1
P&L impact of +1% rate increase	- 0,06	- 0,08	- 0,09	- 0,09	- 0,08	- 0,07	- 0,06	- 0,04	- 0,02	0,01

- For each time band, the average fixed balance is reported negatively signed for an asset and positively signed for a liability. For the sake of simplicity, time bands above are yearly time band. In practice, the time bands are usually: quarter long for the next year or two, then year long for the next few years, then 5 year long beyond.
- A negative gap means that there is an excess of fixed rate assets over fixed rate liabilities for the considered time band, which means that a rate increase would be detrimental to the P&L of that time band. By « default » of specific management, a gap will be closed with short term borrowings
- Assets and liabilities are usually broken down in smaller categories to help analyses
- Rem: Core deposits' FTP are considered here, not client rates: the non interest ratecomponent are not considered.

Bank B

... and IR Gaps gives a view on P&L

Actually, the (oustanding) balance perspective is complemented with a rate (ie FTP) perspective: the average FTP is calculated for each time band on assets and liabilities:

Avg Balance	1 y	2y	Зу	4y	5y	6y	7 y	8y	9y	10 y
Fixed Rate Assets	- 96	- 89	- 81	- 74	- 67	- 60	- 54	- 47	- 40	- 34
Avg FTP	4,50%	4,45%	4,40%	4,35%	4,30%	4,25%	4,20%	4,15%	4,10%	4,05%
Fixed Rate Liabilities	90	81	73	65	59	53	48	43	39	35
Avg FTP	4,40%	4,38%	4,35%	4,33%	4,30%	4,28%	4,25%	4,23%	4,20%	4,18%
Fixed Rate gap	- 6	- 8	- 9	- 9	- 8	- 7	- 6	- 4	- 2	1
Expected O/N	1,00%	1,25%	1,50%	1,75%	2,00%	2,25%	2,50%	2,75%	3,00%	3,25%
Expected P&L 0,31	0,31	0,31	0,29	0,24	0,19	0,13	0,08	0,02	- 0,02	- 0,05
P&L impact of +1% rate increase	- 0,06	- 0,08	- 0,09	- 0,09	- 0,08	- 0,07	- 0,06	- 0,04	- 0,02	0,01

- The gap is closed with expected short term values (O/N)
- This helps forecasting the P&L of ALM, measuring the risks.

Bank B - Net Interest Income sensibilities help capture the structural risk

- Gaps are « closed world » risk metrics: balance sheet accounts are assumed to run off
- Net Interest Income sensitivity analyses enable to get an « open world » risk metric view by simulating the whole (business line-)balance sheet, including future mitigating strategies

They enable to better fit the « on going » business mode that ALM is involved in (the branches will not stop taking new deposits or originating new loans!)